Efficacy of adjuvant therapy in patients (pts) with AJCC v8 stage IIIA cutaneous melanoma.

Piyush Grover¹, Isabel Li¹, Anke M.J. Kuijpers², Firas Kreidieh³, Andrew Williamson⁴, Teresa Amaral⁵, Florentia Dimitriou⁶, Joanna Placzke⁷, Kelly Olino⁸, Maria Grazia Vitale⁹, Philippe Saiag¹⁰, Ralf Gutzmer¹¹, Clara Allayous¹², Roger Olofsson Bagge¹³, Nethanel Asher¹⁴, Tarek M. Meniawy¹⁵, Aleigha R. Lawless¹⁶, Lydia Warburton¹⁷, Alexander M. Menzies¹⁸, Georgina V. Long¹⁸

¹Melanoma Institute Australia, The University of Sydney, Australia, ² The Netherlands Cancer Institute, Netherlands, ³ MD Anderson Cancer Center, USA, ⁴ The Christie NHS Foundation Trust, UK, ⁵Eberhard Karls University, Germany, ⁶ University Hospital Zurich, Switzerland, ⁷ Maria Sklodowska-Curie National Research Institute of Oncology, Poland, 8 Yale School of Medicine, USA, 9 Istituto Nazionale Tumori IRCCS Fondazione Pascale, Italy, 10 Ambroise-Paré Hospital, France, 11 Ruhr University Bochum Campus Minden, Germany, 12 APHP Hôpital Saint-Louis, France, 13 Sahlgrenska Center for Cancer Research, Sweden ¹ Sheba Medical Center, Israel, ¹⁵ Sir Charles Gairdner Hospital, Australia, ¹⁶ Harvard Medical School, USA, ¹⁷ Fiona Stanley Hospital, Australia, ¹⁸ Melanoma Institute Australia, University of Sydney, Mater and Royal North Shore Hospitals, Australia, Australia, ¹⁸ Melanoma Institute Australia, University of Sydney, Mater and Royal North Shore Hospitals, Australia, Australia, ¹⁸ Melanoma Institute Australia, University of Sydney, Mater and Royal North Shore Hospitals, Australia, ¹⁸ Melanoma Institute Australia, ¹⁹ North Shore Hospitals, Australia, ¹⁹ North Shore Hospitals, Australia, ¹⁹ North Shore Hospitals, Australia, ¹⁰ North Shore Hospitals, ¹⁰ North Shore Hospi

Background

- Patients (pts) with resected American Joint Committee on Cancer version 8 (AJCC v8) stage IIIA cutaneous melanoma have been under-represented in clinical trials of adjuvant drug therapy.¹⁻³
- Anti programmed death 1 (PD1) antibodies and BRAF/MEKtargeted therapy (TT) are approved for adjuvant management of stage III A-D melanoma.
- The risk-benefit ratio of adjuvant drug therapy in stage IIIA melanoma is unclear.
- We examined the risks and benefits of adjuvant drug therapy in pts with AJCC v8 stage IIIA melanoma.

Methods

- In this retrospective, multicenter study, pts with stage IIIA melanoma (AJCC v8) diagnosed between 1 January 2018 and 1 July 2021 who received adjuvant pembrolizumab or nivolumab (PD1), BRAF/MEK-targeted therapy dabrafenib + trametinib, or no adjuvant treatment (OBS) were included.
- Recurrence-free survival (RFS), distant metastasis-free survival (DMFS), and toxicity rates were examined.

Results

- 628 pts from 35 centers across Australia, Europe and USA were included.
- Median follow-up 2.6 years (IQR, 1.6-3.4 years).
- There were 256 pts in PD1 cohort, 80 in TT cohort and 292 in OBS cohort.
- Rate of completion of PD1 and TT therapy were 57.0% and 70.0% respectively.

Table 1. Baseline patient characteristics and the median follow-up for the population stratified by adjuvant management.

dissection,

Extranodal

Mutation st Follow-up, (IQR)

PD-1, anti-programmed death 1; ECOG, Eastern Cooperative Oncology Group; IQR, interquartile range; OBS, observation; TT, targeted therapy.

Conclusions

- Prognosis in stage IIIA cutaneous melanoma is favourable.
- Adjuvant PD1 or BRAF/MEK inhibitor targeted therapy did not significantly improve recurrence-free survival or distant metastasis-free survival compared to observation in patients with resected stage IIIA melanoma.
- Outcomes after adjuvant therapy in this population needs further study in prospective randomised trials with longer follow-up.

ASCO 2023

Results

	PD1, n=256	TT, n=80	OBS, n=292	
Male	150 (58.6)	36 (45.0)	151 (51.7)	
(years) (IQR)	54 (42-64)	49 (37-58)	58 (46-68)	
mance status, n				
0	229 (89.5)	61 (90.0)	258 (88.3)	
ıbtype, n (%)				
ial spreading	163 (63.7)	41 (63.8)	191 (65.4)	
odular	40 (15.6)	8 (12.5)	29 (9.9)	
go maligna	6 (2.3)	2 (2.5)	6 (2.1)	
lentiginous	9 (3.5)	2 (3.7)	5 (1.7)	
ness (mm) (IQR)	1.3 (1.1-1.7)	1.3 (1.1- 1.5)	1.3 (1.1-1.6)	
nedian (per mm²)	3.0 (1.0-5.0)	2.5 (1.0- 4.0)	2.0 (1.0-4.0)	
ulceration, n (%)				
Yes	22 (8.6)	3 (3.8)	8 (2.7)	
involvement, n				
N1a	206 (80.5)	64 (80.0)	253 (86.6)	
N2a	50 (19.5)	16 (20.0)	39 (13.4)	
[·] of lymph nodes edian, n, (IQR)	2 (1.0-3.0)	2 (1.0-2.0)	2 (1.0-3.0)	
meter of the metastasis, (IQR)	1.2 (0.5-2.0)	1.0 (0.3- 2.0)	0.5 (0.1-1.1)	
nph node (%)				
Yes	55 (21.5)	4 (5.0)	24 (8.2)	
ktension, n (%)				
Yes	8 (3.1)	2 (2.5)	3 (1.0)	
us, n (%)				
F wildtype	95 (37.1)	0	41 (14.1)	
AF V600	87 (37.1)	80 (100)	97 (33.2)	
edian (years)	2.7 (1.7-3.4)	2.4 (1.5- 3.2)	2.6 (1.5-3.4)	

Figure 1. Kaplan Meier curves showing A. recurrence-free survival (RFS) and B. distant metastasis-free survival (DMFS) by treatment cohorts.

Table 2. Association between clinicopathological characteristics and recurrence within patients treated with immunotherapy (PD1) and observation (OBS).

Variable	PD1	OBS		
	HR (95% CI)	Р	HR (95% CI)	Р
		value		value
Age	1.01 (0.99 – 1.02)	0.521	1.04 (1.02 – 1.07)	<0.001
Mitotic rate (per 1/mm ²)	1.07 (1.00 – 1.14)	0.039	1.09 (1.03 – 1.16)	0.003
Breslow thickness (per	1.90 (1.50 – 2.40)	<0.001	1.88 (1.29 – 2.72)	<0.001
mm)				
Complete lymph node	1.81 (1.04 – 3.14)	0.034	2.01 (0.96 – 4.21)	0.065
dissection (yes vs. no)				
ECOG performance	1.04 (0.38 – 2.87)	0.942	1.88 (0.88 – 4.00)	0.101
status (0 vs. 1)				
Groin nodal metastasis	1.14 (0.64 – 2.01)	0.663	1.87 (0.97 – 3.62)	0.061
(yes vs. no)				
Neck nodal metastasis	1.17 (0.51 – 2.68)	0.716	3.82 (1.91 – 7.66)	<0.001
(yes vs. no)				

CI, confidence interval; HR, hazard ratio; PD1, anti-programmed death 1; OBS, observation.

Table 3. Landmark survival outcomes stratified by A. Treatment and B. BRAF status.

TABLE 3A	1-ує	ear	2-year		
	RFS, %	DMFS, %	RFS, %	DMFS, %	
	(95% Cl)	(95% Cl)	(95% Cl)	(95% Cl)	
PD-1	93.3	96.4	79.3	88.4	
	(90.3 – 96.4)	(94.2 – 98.8)	(74.1 – 84.8)	(84.3 – 92.8)	
тт	100	100	98.6 (96.0 – 100)	100	
OBS	91.3	94.6	84.3	91.1	
	(88.1 – 94.7)	(91.9 – 97.3)	(79.9 – 89.0)	(87.7 – 94.7)	

	BRAF wildtype				BRAE mutant			
3B	1-year	1-year	2-year	2-year	1-year	1-year	2-year	2-year
	RFS, %	DMFS, %	RFS, %	DMFS, %	RFS, %	DMFS, %	RFS, %	DMFS, %
	(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% Cl)	(95% CI)
PD-1	94.7	94.7	64.5	94.7	91.4	94.6	71.6	83.5
	(85.2 –	(85.2 –	(43.4 –	(85.2 –	(85.9 –	(90.2 -	(62.5 –	(75.9 –
	100)	100)	95.9)	100)	97.3)	99.3)	82.1)	91.9)
TT	-	-	-	-	100	100	98.5 (95.6 – 100)	100
OBS	83.0	88.5	76.6	88.5	89.6	92.7	83.4	90.2
	(67.1 –	(74.8 –	(58.8 –	(74.8 –	(83.7 –	(87.7 –	(76.0 –	(84.2 –
	100)	100)	99.7)	100)	95.9)	98.1)	91.5)	96.5)

CI, confidence interval; DMFS, distant metastasis-free survival; OBS, observation; PD1 anti-programmed death 1; RFS, recurrence-free survival; TT, targeted therapy.

Table 4. Treatment related adverse events.

Toxicity	PD1, r	=256	TT, n=80		
	Any Grade, n (%)	≥ Grade 3, n (%)	Any Grade, n (%)	≥ Grade 3, n (%)	
Any	136 (53.1)	28 (10.9)	62 (77.5)	14 (17.5)	
Cutaneous reaction	27 (10.5)	4 (1.6)	17 (21.2)	0	
Fever	2 (0.8)	0	31 (38.8)	8 (10.0)	
Endocrinopathies	45 (17.6)	9 (3.5)	1 (1.2)	1 (1.2)	
Gastrointestinal	15 (5.8)	5 (1.9)	3 (3.7)	1 (1.2)	
Hepatitis	15 (5.8)	6 (2.3)	5 (6.3)	3 (3.8)	
Rheumatological	23 (9.0)	3 (1.2)	3 (3.8)	1 (1.2)	
Pneumonitis	2 (0.8)	0	0	0	
Nephritis	1 (0.4)	0	2 (2.5)	0	
Creatine kinase elevation	4 (1.6)	1 (0.4)	0	0	
Neurological	2 (0.8)	0	0	0	
Haematological	0	0	0	0	
Toxicity leading to discontinuation	34 (13.3)		17 (21.2)		
Unresolved toxicity	69 (26.9)		10 (12.5)		

PD1, anti-programmed death 1; TT, targeted therapy

References

Eggermont, A et al. NEJM, 2018. 2. Weber, J et al. NEJM, 2017.

3. Long, G et al. NEJM, 2017.

Acknowledgements

All patients and their families. * We acknowledge Dr Thomas Carter and Dr Paul Nathan who contributed 15 pts after the abstract submission.

