Single-Cell Multi-Omics: Insights into Therapeutic Innovations to Advance Treatment in Cancer.
Abstract
Advances in single-cell multi-omics technologies have deepened our understanding of cancer biology by integrating genomic, transcriptomic, epigenomic, and proteomic data at single-cell resolution. These single-cell multi-omics technologies provide unprecedented insights into tumour heterogeneity, tumour microenvironment, and mechanisms of therapeutic resistance, enabling the development of precision medicine strategies. The emerging field of single-cell multi-omics in genomic medicine has improved patient outcomes. However, most clinical applications still depend on bulk genomic approaches, which fail to directly capture the genomic variations driving cellular heterogeneity. In this review, we explore the common single-cell multi-omics platforms and discuss key analytical steps for data integration. Furthermore, we highlight emerging knowledge in therapeutic resistance and immune evasion, and the potential of new therapeutic innovations informed by single-cell multi-omics. Finally, we discuss the future directions of the application of single-cell multi-omics technologies. By bridging the gap between technological advancements and clinical implementation, this review provides a roadmap for leveraging single-cell multi-omics to improve cancer treatment and patient outcomes.